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On Separation Axioms in
Fuzzifying Generalized Topology

N. Gowrisankar, N. Rajesh and V. Vijayabharathi

Abstract. In this paper we introduce and study the concept of fuzzi-
fying separation axioms in fuzzifying generalized topological spaces.

1. introduction

Fuzzy topology as an important research field in fuzzy set theory has
been developed into quite a mature discipline [1]–[7]. In contrast to classi-
cal topology, fuzzy topology is endowed with richer structure to a certain
extent, which is manifested in different ways to generalize certain classical
concepts. So far, according to [2], the kind of topologies defined by Chang
[8] and Goguen [9] are called the topologies of fuzzy subsets, and further
are naturally called L-topological spaces if a lattice L of membership values
has been chosen. Loosely speaking, a topology of fuzzy subsets (resp. an
L-topological space) is a family µ of fuzzy subsets (resp. L-fuzzy subsets) of
nonempty set X, and µ satisfies the basic conditions of classical topologies.
The concept of fuzzifying generalized topology was introduced and studied
by the same authors [10]. All the results in this paper as a generalization
of the results in [4], [11], [12] and [13]. That is, we introduce and study the
concept of fuzzifying separation axioms in fuzzifying generalized topological
spaces.

2. Preliminaries

First, we display the Lukasiewicz logic and corresponding set theoretical
notations used in this paper. For any formula ϕ, the symbol [ϕ] means the
truth value of ϕ, where the set of truth values is the unit interval [0, 1]. We
write |= ϕ if [ϕ] = 1 for any interpretation. By |=w ϕ(ϕ is feebly valid)
we mean that for any valuation it always holds that [ϕ] > 0, and ϕ |=ws ξ
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we mean that [ϕ] > 0 implies [ξ]=1. The truth valuation rules for primary
fuzzy logical formulae and corresponding set theoretical notations are:

(1) (a) [λ] = λ(λ ∈ [0, 1]);
(b) [ϕ ∧ ξ] = min([ϕ], [ξ]);
(c) [ϕ→ ξ] = min(1, 1− [ϕ] + [ξ]);

(2) If Ã ∈ =(X), then [x ∈ Ã] := Ã(x).
(3) If X is the universe of discourse, then [∀xϕ(x)] := inf

x∈X
[ϕ(x)].

In addition, the truth valuation rules for some derived formulae are

(1) [¬ϕ] := [ϕ→ 0] = 1− [ϕ];
(2) [ϕ ∨ ξ] := [¬(¬ϕ ∧ ¬ξ)] = max([ϕ], [ξ]);
(3) [ϕ↔ ξ] := [(ϕ→ ξ) ∧ (ξ → ϕ)];
(4) [ϕ∧

◦
ξ] := [¬(ϕ→ ¬ξ)] = max(0, [ϕ] + [ξ]− 1);

(5) [ϕ ∨ ξ] := [¬ϕ→ ξ] = min(1, [ϕ] + [ξ]);
(6) [∃xϕ(x)] := [¬∀x¬ϕ(x)] := sup

x∈X
[ϕ(x)];

(7) If Ã, B̃ ∈ =(X), then
(a) [Ã ⊆ B̃] := [∀x(x ∈ Ã→ x ∈ B̃)] = inf

x∈X
min(1, 1− Ã(x)+ B̃(x));

(b) [Ã ≡ B̃] := [Ã ⊆ B̃] ∧ [B̃ ⊆ Ã];
(c) [Ã ≡ B̃], where =(X) is the family of all fuzzy sets in X.

Definition 1 ([10]). Let X be a universe of discourse, µ ∈ =(P (X)) satis-
fying the following conditions:

(1) µ(x) = 1, µ(∅) = 1;
(2) for any {Aλ : λ ∈ ∆}, µ( ∪

λ∈∆
Aλ) ≥ ∧

λ∈∆
µ(Aλ). Then µ is called a

fuzzifying generalized topology and (X,µ) is a fuzzifying generalized
topological space.

Definition 2 ([10]). The family of all fuzzifying generalized closed sets,
denoted by F ∈ =(P (X)), is defined A ∈ F := X − A ∈ µ, where X − A is
the complement of A.

Definition 3 ([10]). The fuzzifying generalized neighborhood system of a
point x ∈ X is denoted by Nx ∈ =(P (X)) and defined as follows:
Nx(A) = sup

x∈B⊆A
µ(B).

Definition 4 ([10]). The generalized closure cµ(A) ofA is defined as cµ(A)(x) =
1−Nx(X −A).

Definition 5 ([10]). For any A ⊆ X the fuzzy set of the generalized inte-
rior points of A is called the interior of A, and given as follows: iµ(A)(x) :=
Nx(A). Clearly, the definitions ofNx(A) and iµ(A) we have µ(A) = inf

x∈A
iµ(A)(x).
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3. Fuzzifying µ-separation axioms

Remark 1. For simplicity we put the following notations:

Kµ
x,y := ∃A((A ∈ Nµ

x ∧ y /∈ A) ∨ (A ∈ Nµ
y ∧ x /∈ A)),

Hµ
x,y := ∃B∃C((B ∈ Nµ

x ∧ y /∈ B) ∨ (C ∈ Nµ
y ∧ x /∈ C)),

Mµ
x,y := ∃B∃C(B ∈ Nµ

x ∧ C ∈ Nµ
y ∧B ∩ C = ∅),

V µ
x,D := ∃A∃B(A ∈ Nµ

x ∧B ∈ µ ∧D ⊆ B ∧A ∩B = ∅),
Wµ
A,B := ∃G∃H(G ∈ µ ∧H ∈ µ ∧A ⊆ G ∧B ⊆ H ∧G ∩H = ∅).

Definition 6. Let Ω be the class of all fuzzifying generalized topological
spaces. The unary fuzzy predicates µ-Ti ∈ I(Ω), i=0,1,2,3,4 and µ-Ri ∈
I(Ω), i=0,1 are defined as follows:

(X,µ) ∈ µ-T0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y)→ Kµ
x,y,

(X,µ) ∈ µ-T1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y)→ Hµ
x,y,

(X,µ) ∈ µ-T2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y)→Mµ
x,y,

(X,µ) ∈ µ-T3 := ∀x∀D(x ∈ X ∧D ∈ Fi ∧ x /∈ D)→ V µ
x,D,

(X,µ) ∈ µ-T4 := ∀A∀B(A ∈ Fi ∧B ∈ Fi ∧A ∩B = ∅)→Wµ
A,B,

(X,µ) ∈ µ-R0 := ∀x∀y(x ∈ X ∧ y ∈ Y ∧ x 6= y)→ (Kµ
x,y → Hµ

x,y),

(X,µ) ∈ µ-R1 := ∀x∀y(x ∈ X ∧ y ∈ Y ∧ x 6= y)→ (Kµ
x,y →Mµ

x,y).

Lemma 1.

(1) �Mµ
x,y → Hµ

x,y,
(2) � Hµ

x,y → Kµ
x,y,

(3) �Mµ
x,y → Kµ

x,y.

Proof.

(1) Since {B, c} ∈ P (X) : B ∩ C = ∅} ⊆
{B, c} ∈ P (X) : y /∈ B ∧ x /∈ C}, then
Mµ
x,y = sup

B∩C=∅
min(Nµ

x (B),

Nµ
y (C) ≤ sup

y/∈B, x/∈C
min(Nµ

x (B), Nµ
y (C)) = Hµ

x,y.

(2) [Kµ
x,y] = max

(
sup
y/∈A

Nµ
x (A), sup

x/∈B
Nµ
y (A)

)
≥ sup

y/∈A
Nµ
x (A) ≥

sup
y/∈A, x/∈B

(Nµ
x (A) ∧Nµ

x (b) = Hµ
x,y.

(3) From (1) and (2), it is obvious. �

Theorem 1.

(1) � (X,µ) ∈ µ-T1 → (X,µ) ∈ µ-T0,
(2) � (X,µ) ∈ µ-T2 → (X,µ) ∈ µ-T1.
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Proof. The proof of (1) and (2) are obtained from Lemma 1 (2) and (1),
respectively. �

Corollary 1. � (X,µ) ∈ µ-T2 → (X,µ) ∈ µ-T0.

Theorem 2. � (X,µ) ∈ µ-T0 ↔ (∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y → (¬(x ∈
cµ({y}))) ∨ ¬(y ∈ cµ({x})))).

Proof.

[(X,µ) ∈ µ− T0] = inf
x 6=y

max(sup
y/∈A

Nµ
x (A), sup

x/∈A
Nµ
y (A))

= inf
x 6=y

max(Nµ
x (X ∼ {y}), Nµ

y (X ∼ {x}))

= inf
x 6=y

max(1− cµ({y})(x), 1− cµ({x})(y))

= inf
x 6=y

(¬(cµ({y})(x)) ∨ ¬(cµ({x})(y)))

=
(
∀x∀y

(
x ∈ X ∧ y ∈ X ∧ x 6= y →

(¬(x ∈ cµ({y}))) ∨ ¬(y ∈ cµ({x}))
))
. �

Theorem 3. For any fuzzifying generalized topological space (X,µ),� (X,µ) ∈
µ-T1 ↔ ∀x({x} ∈ Fµ).

Proof. For any x1, x2, x1 6= x2,

[∀x({x} ∈ Fµ)] = inf
x∈X

Fµ({x})

= inf
x∈X

µ(X ∼ {x})

= inf
x∈X

inf
y∈X∼{x}

Nµ
y (X ∼ {x})

≤ inf
y∈X∼{x2}

Nµ
y (X ∼ {x2})

≤ Nµ
x1(X ∼ {x2}) = sup

x2 /∈A
Nµ
x1(A).

Similarly, we have, [∀x({x} ∈ Fµ)] ≤ sup
x1 /∈B

Nµ
x2(B). Then,

[∀x({x} ∈ Fµ)] = inf
x1 6=x2

min( sup
x2 /∈A

Nµ
x1(A), sup

x1∈B
Nµ
x2(B))

= inf
x1 6=x2

sup
x1 /∈B, x2 /∈A

min(Nµ
x1(A), Nµ

x2(B))

= [(X,µ) ∈ µ− T1].
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On the other hand,

[(X,µ) ∈ µ− T1] = inf
x1 6=x2

min( sup
x2 /∈A

Nµ
x1(A), sup

x1∈B
Nµ
x2(B))

= inf
x1 6=x2

min(Nµ
x1(X ∼ {x2}), Nµ

x2(X ∼ {x1}))

≤ inf
x1 6=x2

Nµ
x1(X ∼ {x2})

= inf
x2∈X

inf
x1∈X∼{x2}

Nµ
x1(X ∼ {x2})

= inf
x2∈X

µ(X ∼ {x2})

= inf
x∈X

µ(X ∼ {x})

= [∀x({x} ∈ Fµ)].

Thus, [(X,µ) ∈ µ− T1] = [∀x({x} ∈ Fµ)]. �

Definition 7. The µ-local base Sβx of x is a function from P (X) into I
such that the following conditions are satisfied:

(1) � Sβx ⊆ Nµ
x ,

(2) � A ∈ Nµ
x → ∃B(B ∈ Sβx ∧ x ∈ B ⊆ A).

Lemma 2. � A ∈ Nµ
x ↔ ∃B(B ∈ Sβx ∧ x ∈ B ⊆ A).

Proof. From condition (1) in Definition 7 we have Nµ
x (A) ≥ Nµ

x (B) ≥
Sβx(B) for eachB ∈ P (X) such that x ∈ B ⊆ A. So, Nµ

x (A) ≥ sup
x∈B⊆A

Sβx(B).

From condition (2) in Definition 7, Nµ
x (A) ≤ sup

x∈B⊆A
Sβx(B). HenceNµ

x (A) =

sup
x∈B⊆A

Sβx(B). �

Theorem 4. If Sβx is a µ-local basis of x, then � (X,µ) ∈ µ-T2 ↔
∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y → ∃B(B ∈ Sβx ∧ y ∈ ¬(cµ(B)))).

Proof. [∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y → ∃B(B ∈ Sβx ∧ y ∈ ¬(cµ(B))))]

= inf
x 6=y

sup
B∈P (X)

min(Sβx(B), Nµ
y (X ∼ B))

= inf
x 6=y

sup
B∈P (X)

sup
y∈C⊆X∼B

min(Sβx(B),Sβy(C))

= inf
x 6=y

sup
B∩C=∅

sup
x∈D⊆B,
y∈E⊆C

min(Sβx(D),Sβy(E))

= inf
x 6=y

sup
B∩C=∅

min( sup
x∈D⊆B

Sβx(D), sup
y∈E⊆C

Sβy(E))

= inf
x 6=y

sup
B∩C=∅

min(Nµ
x (B), Nµ

y (C))

= [(X,µ) ∈ µ− T2].

�



68 On Separation Axioms in Fuzzifying Generalized Topology

Theorem 5. � (X,µ) ∈ µ-R1 → (X,µ) ∈ µ-R0.

Proof. From Lemma 1 (1) the proof is immediate. �

Theorem 6.

(1) � (X,µ) ∈ µ-T1 → (X,µ) ∈ µ-R0,
(2) � (X,µ) ∈ µ-T1 → (X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0,
(3) If µ-T0(X,µ) = 1, then

� (X,µ) ∈ µ-T1 ↔ (X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0.

Proof.

(1) We have,

µ-R1(X,µ) = inf
x 6=y

[Hµ
x,y] ≤ inf

x 6=y
[Kµ

x,y → Hµ
x,y] = µ-R0(X,µ).

(2) It is obtained from (1) and from Theorem 1(1).

(3) Since µ-T0(X,µ) = 1, for every x, y ∈ X such that x 6= y we have
[Kµ

x,y] = 1. Now,

[(X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0] = [(X,µ) ∈ -µ-R0]

= inf
x 6=y

min(1, 1− [Kµ
x,y] + [Hµ

x,y])

= inf
x 6=y

[Hµ
x,y] = -µ-T1(X,µ). �

Theorem 7.

(1) � (X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T1;
(2) If µ-T0(X,µ) = 1, then

� (X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0 ↔ (X,µ) ∈ µ-T1.

Proof.

(1) [(X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0]

= max(0, -µ-R0(X,µ) + -µ-T0(X,µ)− 1)

= max(0, inf
x 6=y

min(1, 1− [Kµ
x,y] + [Hµ

x,y]) + inf
x 6=y

[Kµ
x,y]− 1)

≤ max(0, inf
x 6=y

min(1, 1− [Kµ
x,y] + [Hµ

x,y]) + [Kµ
x,y]− 1)

= inf
x 6=y

[Hµ
x,y] = -µ-T1(X,µ).

(2) [(X,µ) ∈ µ-R0 ∧ (X,µ) ∈ µ-T0]

= [(X,µ) ∈ -µ-R0] = inf
x 6=y

min(1, 1− [Kµ
x,y] + [Hµ

x,y])

= inf
x 6=y

[Hµ
x,y] = -µ-T1(X,µ),
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because µ-T0(X,µ) = 1, we have for each x, y ∈ X such that
x 6= y, [Kµ

x,y] = 1. �

Theorem 8.

(1) � (X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R0 → (X,µ) ∈ µ-T1).
(2) � (X,µ) ∈ µ-R0 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T1).

Proof. From Theorems 6 (1) and 7 (1), we have

(1) [(X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R0 → (X,µ) ∈ µ-T1)]

= min(1, 1− [(X,µ) ∈ -µ-T0]

+ min(1, 1− [(X,µ) ∈ -µ-R0] + [(X,µ) ∈ -µ-T1]))

= min(1, 1− [(X,µ) ∈ -µ-T0]

+ 1− [(X,µ) ∈ -µ-R0] + [(X,µ) ∈ -µ-T1])

= min(1, 1− ([(X,µ) ∈ -µ-T0]

+ [(X,µ) ∈ -µ-R0]− 1) + [(X,µ) ∈ -µ-T1]) = 1.

(2) [(X,µ) ∈ µ-R0 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T1)].

= min(1, 1− ([(X,µ) ∈ -µ-T0]

+ [(X,µ) ∈ -µ-R0]− 1) + [(X,µ) ∈ -µ-T1]) = 1. �

Theorem 9.

(1) � (X,µ) ∈ µ-T2 → (X,µ) ∈ µ-R1,
(2) � (X,µ) ∈ µ-T2 → (X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0;
(3) If µ-T0(X,µ) = 1, then

� (X,µ) ∈ µ-T2 ↔ (X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0.

Proof.

(1) We have µ-T2(X,µ) = inf
x 6=y

[Mµ
x,y] ≤ inf

x 6=y
[Kµ

x,y →Mµ
x,y] = µ-R1(X,µ).

(2) It is obtained from (1) and Corollary 1.

(3) Since µ-T0(X,µ) = 1, then for each x, y ∈ X such that x 6= y we
have [Kµ

x,y] = 1.
Now,

[(X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0]

= [(X,µ) ∈ -µ-R1] = inf
x 6=y

min(1, 1− [Kµ
x,y] + [Mµ

x,y])

= inf
x 6=y

[Mµ
x,y] = -µ-T2(X,µ). �

Theorem 10.

(1) � (X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T2.
(2) � (X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0 ↔ (X,µ) ∈ µ-T2.
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Proof.

(1) [(X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0]

= max(0, -µ-R1(X,µ) + -µ-T0(X,µ)− 1)

= max(0, inf
x 6=y

min(1, 1− [Kµ
x,y] + [Mµ

x,y]) + inf
x 6=y

[Kµ
x,y]− 1)

≤ max(0, inf
x6=y

min(1, 1− [Kµ
x,y] + [Mµ

x,y]) + [Kµ
x,y]− 1)

= inf
x 6=y

[Mµ
x,y] = -µ-T2(X,µ).

(2) [(X,µ) ∈ µ-R1 ∧ (X,µ) ∈ µ-T0]

= [(X,µ) ∈ -µ-R1] = inf
x 6=y

min(1, 1− [Kµ
x,y] + [Mµ

x,y])

= inf
x 6=y

[Mµ
x,y] = -µ-T2(X,µ),

since µ-T0(X,µ) = 1, then for each x, y ∈ X such that
x 6= y, [Kµ

x,y] = 1. �

Theorem 11.

(1) � (X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R1 → (X,µ) ∈ µ-T2).
(2) � (X,µ) ∈ µ-R1 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T2).

Proof.

(1) From Theorems 9(1) and 10(1) we have

[(X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R1 → (X,µ) ∈ µ-T2)]

= min(1, 1− [(X,µ) ∈ -µ-T0] + min(1, 1− [(X,µ) ∈ -µ-R1] + [(X,µ) ∈ -µ-T2]))

= min(1, 1− [(X,µ) ∈ -µ-T0] + 1− [(X,µ) ∈ -µ-R1] + [(X,µ) ∈ -µ-T2])

= min(1, 1− ([(X,µ) ∈ -µ-T0] + [(X,µ) ∈ -µ-R1]− 1) + [(X,µ) ∈ -µ-T2]) = 1.

(2) The proof is similar to (1). �

Theorem 12. If µ-T0(X,µ) = 1, then

(1) � ((X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R0 → (X,µ) ∈ µ-T1))
∧((X,µ) ∈ µ-T1 → ¬((X,µ) ∈ µ-T0 → ¬((X,µ) ∈ µ-R0))),

(2) � ((X,µ) ∈ µ-R0 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T1))
∧((X,µ) ∈ µ-T1 → ¬((X,µ) ∈ µ-T0 → ¬((X,µ) ∈ µ-R0))),

(3) � ((X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R0 → (X,µ) ∈ µ-T1))
∧((X,µ) ∈ µ-T1 → ¬((X,µ) ∈ µ-R0 → ¬((X,µ) ∈ µ-T0))),

(4) � ((X,µ) ∈ µ-R0 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T1))
∧((X,µ) ∈ µ-T1 → ¬((X,µ) ∈ µ-R0 → ¬((X,µ) ∈ µ-T0))).

Proof. For simplicity we put, µ-T0(X,µ) = λ, µ-R0(X,µ) = θ and µ-T1(X,µ) =
ρ. Now, applying Theorem 7(2), the proof is obtained with some relations
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in fuzzy logic as follows:

(1) = (λ∧
◦
θ ↔ ρ) = (λ∧

◦
θ → ρ) ∧ (ρ→ λ∧

◦
θ)

= (λ∧
◦
θ∧
◦
¬ρ) ∧ ¬(ρ ∧ ¬(λ∧

◦
θ))

= ¬(λ∧
◦
¬(¬(θ∧

◦
¬ρ))) ∧ ¬(ρ∧

◦
(λ→ ¬θ))

= (λ→ ¬(θ∧
◦
¬ρ)) ∧ (ρ→ ¬(λ→ ¬θ))

= (λ→ (θ → ρ)) ∧ (ρ→ ¬(λ→ ¬θ)),
since ∧

◦
is commutative one can have the proof of statements (2)-(4) in a

similar way as (1). �

By a similar procedure to Theorem 11 one can have the following theorem.

Theorem 13.

(1) � ((X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R1 → (X,µ) ∈ µ-T2))
∧((X,µ) ∈ µ-T2 → ¬((X,µ) ∈ µ-T0 → ¬((X,µ) ∈ µ-R1))),

(2) � ((X,µ) ∈ µ-R1 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T2))
∧((X,µ) ∈ µ-T2 → ¬((X,µ) ∈ µ-T0 → ¬((X,µ) ∈ µ-R1))),

(3) � ((X,µ) ∈ µ-T0 → ((X,µ) ∈ µ-R1 → (X,µ) ∈ µ-T2))
∧((X,µ) ∈ µ-T2 → ¬((X,µ) ∈ µ-R1 → ¬((X,µ) ∈ µ-T0))),

(4) � ((X,µ) ∈ µ-R1 → ((X,µ) ∈ µ-T0 → (X,µ) ∈ µ-T2))
∧((X,µ) ∈ µ-T2 → ¬((X,µ) ∈ µ-R1 → ¬((X,µ) ∈ µ-T0))).

Lemma 3.

(1) If D ⊆ B, then sup
A∩B=∅

Nµ
x (A) = sup

A∩B=∅,D⊆B
Nµ
x (Z);

(2) sup
A∩B=∅

inf
y∈D

Nµ
y (X ∼ A) = sup

A∩B=∅
D⊆B

µ(B).

Proof.

(1) Since D ⊆ B,

sup
A∩B=∅

Nµ
x (A) = sup

A∩B=∅
Nµ
x (A) ∧ [D ⊆ B] = sup

A∩B=∅
D⊆B

Nµ
x (A).

(2) Let y ∈ D and A ∩B = ∅. Then,
sup

A∩B=∅
D⊆B

µ(B) = sup
A∩B=∅
D⊆B

µ(B) ∧ [y ∈ D]

= sup
y∈D⊆B⊆X∼A

µ(B)

= sup
y∈D⊆X∼A

µ(B)

= sup
A∩B=∅

inf
y∈D

Nµ
y (X ∼ A). �
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Definition 8. µ-T (1)
3 (X,µ) :=

∀x∀D(x ∈ X ∧D ∈ Fi ∧ x /∈ D → ∃A(A ∈ Nµ
x ∧ (D ⊆ X ∼ cµ(A)))).

Theorem 14. � (X,µ) ∈ µ-T3 ↔ (X, 1, 2) ∈ µ-T (1)
3 .

Proof. Now,

µ-T (1)
3 (X,µ) = inf

x/∈D
min(1, 1− i(X ∼ D)

+ sup
A∈P (X)

min(Nµ
x (A), inf

y∈D
(1− cµ(A)(y)))),

= inf
x/∈D

min(1, 1− i(X ∼ D)

+ sup
A∈P (X)

min(Nµ
x (A), inf

y∈D
Nµ
y (X ∼ A))),

and

µ-T3(X,µ) = inf
x/∈D

min(1, 1− i(X ∼ D) + sup
A∩B=∅
D⊆B

min(Nµ
x (A), µ(B))).

So the result hold if we prove that

(?) sup
A∈P (X)

min(Nµ
x (A), inf

y∈D
Nµ
y (X ∼ A)) = sup

A∩B=∅
D⊆B

min(Nµ
x (A), µ(B)).

It is clear that, on the left hand side of (?) when A ∩ C 6= ∅, then there
exists y ∈ X such that y ∈ D and y /∈ X ∼ A. So inf

y∈D
Nµ
y (X ∼ A) = 0 and

thus (?) becomes

sup
A∈P (X)
A∩B=∅

min(Nµ
x (A), inf

y∈D
Nµ
y (X ∼ A)) = sup

A∩B=∅
D⊆B

min(Nµ
x (A), µ(B)),

which is obtained from Lemma 3. �

Definition 9. µ-T (2)
3 (X,µ) := ∀x∀B(x ∈ B ∧B ∈ µ→

∃A(A ∈ Nµ
x ∧ cµ(A) ⊆ B)).

Theorem 15. � (X,µ) ∈ µ-T3 ↔ (X,µ) ∈ µ-T (2)
3 .

Proof. From Theorem 14, we have
µ-T3(X,µ)
= inf

x/∈D
min(1, 1− µ(X ∼ D) + sup

A∈P (X)
min(Nµ

x (A), inf
y∈D

Nµ
y (X ∼ A))).
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Now, if we put B = X ∼ D, then

µ− T (2)
3 (X,µ)

= inf
x∈B

min(1, 1− i(B) + sup
A∈P (X)

min(Nµ
x (A), inf

y∈X∼B
Nµ
y (X ∼ A)))

= inf
x/∈D

min(1, 1− µ(X ∼ D) + sup
A∈P (X)

min(Nµ
x (A), inf

y∈D
Nµ
y (X ∼ A)))

= µ− T3(X,µ).

�
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